
LIMINAL RECIPROCITY AND FACTORIZATION STATISTICS

TREVOR HYDE

ABSTRACT. Let Md,n(q) denote the number of monic irreducible polynomials in Fq[x1, x2, . . . , xn]
of degree d. We show that for a fixed degree d, the sequence Md,n(q) converges coefficientwise
to an explicitly determined rational function Md,∞(q). The limit Md,∞(q) is related to the classic
necklace polynomial Md,1(q) by an involutive functional equation we call liminal reciprocity. The
limiting first moments of factorization statistics for squarefree polynomials are expressed in terms of
symmetric group characters as a consequence of liminal reciprocity, giving a liminal analog of the
twisted Grothendieck-Lefschetz formula of Church, Ellenberg, and Farb.

1. INTRODUCTION

Let Fq be a field with q elements. How many irreducible polynomials of degree d are there in
Fq[x1, x2, . . . , xn]? Let Md,n(q) denote the number of irreducible polynomials in Fq[x1, x2, . . . , xn]
of total degree d which are monic with respect to some fixed monomial ordering (Md,n(q) is indepen-
dent of the choice of monomial ordering. See Section 2 for details.) When n = 1, Md,1(q) is given
by the dth necklace polynomial

Md,1(q) :=
1

d

∑
e|d

µ(d/e)qe, (1.1)

where µ is the Möbius function. There does not appear to be a simple analog of (1.1) for Md,n(q)
when n > 1. In Lemma 2.1 Md,n(q) is shown to be a recursively computable polynomial in q for all
n ≥ 1. The table below gives the low degree terms of M3,n(q) for small n.

n M3,n(q)

1 −1
3q + 1

3q
3

2 −1
3q −

1
3q

2 + 1
3q

3 − q5 − 2
3q

6 + . . .

3 −1
3q −

1
3q

2 + q4 + q5 + 1
3q

6 − q7 + . . .

4 −1
3q −

1
3q

2 + 2
3q

4 + 2q5 + 7
3q

6 + 2q7 + . . .

5 −1
3q −

1
3q

2 + 2
3q

4 + 5
3q

5 + 10
3 q

6 + 4q7 + . . .

6 −1
3q −

1
3q

2 + 2
3q

4 + 5
3q

5 + 3q6 + 5q7 + . . .

7 −1
3q −

1
3q

2 + 2
3q

4 + 5
3q

5 + 3q6 + 14
3 q

7 + . . .

The table suggests that the sequence of polynomials M3,n(q) converge coefficientwise as the num-
ber of variables n increases. We show that for any degree d, the sequence of polynomials Md,n(q)
converges coefficientwise to a rational function Md,∞(q) as n → ∞. The limit Md,∞(q) has an
expression closely related to (1.1).

Theorem 1.1. Let Md,n(q) be the number of irreducible degree d polynomials in Fq[x1, x2, . . . , xn]
which are monic with respect to some fixed monomial ordering. Then Md,n(q) is a polynomial in
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q and for each d ≥ 1 the sequence of polynomials Md,n(q) converges coefficientwise (that is, with
respect to the q-adic topology) in the formal power series ring QJqK to the rational function

Md,∞(q) := −1

d

∑
e|d

µ(d/e)

(
1

1− 1
q

)e
.

In particular Md,∞(q) satisfies the functional equation,

Md,∞(q) = −Md,1

(
1

1− 1
q

)
. (1.2)

Furthermore the rate of convergence of Md,n(q) is bounded by the congruence

Md,n(q) ≡Md,∞(q) mod qn+1.

The fractional linear transformation q 7→ 1
1− 1

q

is an involution, hence (1.2) is equivalent to

Md,1(q) = −Md,∞

(
1

1− 1
q

)
.

This involutive functional equation relating irreducible polynomial counts in one and infinitely many
variables is the first instance of a phenomenon we call liminal reciprocity.

1.1. Liminal reciprocity for type polynomials. Let Polyd,n(Fq) denote the set of polynomials in
Fq[x1, x2, . . . , xn] of total degree d which are monic with respect to some fixed monomial ordering.
Since the polynomial ring Fq[x1, x2, . . . , xn] has unique factorization, each f ∈ Polyd,n(Fq) has
a well-defined factorization type. The factorization type of a polynomial f ∈ Polyd,n(Fq) is the
partition λ ` d given by the degrees of the Fq-irreducible factors of f .

The factorization type does not record the multiplicities of individual factors, only the degrees of
the irreducible factors. For example, the polynomials x2 and x(x + 1) both have factorization type
(12) since they each have two linear factors.

Definition. If λ ` d is a partition, then the λ-type polynomial Tλ,n(q) is the number of elements
in Polyd,n(Fq) with factorization type λ. Similarly the squarefree λ-type polynomial T sf

λ,n(q) is the
number of squarefree elements in Polyd,n(Fq) with factorization type λ. The type polynomials may
be expressed in terms of Md,n(q) as

Tλ,n(q) =
∏
j≥1

((
Mj,n(q)

mj(λ)

))
T sf
λ,n(q) =

∏
j≥1

(
Mj,n(q)

mj(λ)

)
,

where mj(λ) is the number of parts of λ of size j,
(
x
m

)
= 1

m!x(x − 1) · · · (x −m + 1) is the usual
binomial coefficient, and

((
x
m

))
= 1

m!x(x+ 1) · · · (x+m− 1). Recall that
(
x
m

)
counts the number of

subsets of size m in a set of size x and
((
x
m

))
counts the number of subsets of size m with repetition

in a set of size x.

It follows from Theorem 1.1 that the coefficientwise limits

Tλ,∞(q) = lim
n→∞

Tλ,n(q) T sf
λ,∞(q) = lim

n→∞
T sf
λ,n(q)

converge to rational functions. Our next result is a version of liminial reciprocity for type polynomials.

Theorem 1.2 (Liminal reciprocity). Let λ be a partition and let `(λ) =
∑

j≥1mj(λ) be the number
of parts of λ. Then the following identities hold in Q(q),

Tλ,∞(q) = (−1)`(λ)T sf
λ,1

(
1

1− 1
q

)
T sf
λ,∞(q) = (−1)`(λ)Tλ,1

(
1

1− 1
q

)
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These identities are involutive in the sense that we can swap the∞ and 1 subscripts to get equiv-
alent statements. The new feature appearing in Theorem 1.2 is the relationship between squarefree
polynomials and general polynomials of a given factorization type. This connection is closely related
to Stanley’s combinatorial reciprocity phenomenon [14] (see Section 1.3 below.)

1.2. Liminal first moments of squarefree factorization statistics. A functionP defined on Polyd,n(Fq)
is called a factorization statistic if P (f) depends only on the factorization type of f . In [9] we found
a surprising connection between the first moments of factorization statistics on the set of univariate
polynomials (n = 1) and the cohomology of point configurations in Euclidean space viewed as a
representation of the symmetric group. See Section 3 for precise definitions. Note that Polysf

d,n(Fq)
denotes the subset of squarefree polynomials in Polyd,n(Fq).

Theorem 1.3 ([9, Thm. 2.4, Thm. 2.5]). Let P be a factorization statistic, and let ψkd , φkd be the
characters of the Sd-representations H2k(PConfd(R3),Q) and Hk(PConfd(R2),Q) respectively.
Then

(1)
∑

f∈Polyd,1(Fq)

P (f) =
d−1∑
k=0

〈P,ψkd〉qd−k

(2)
∑

f∈Polysfd,1(Fq)

P (f) =
d−1∑
k=0

(−1)k〈P, φkd〉qd−k,

where 〈P,Q〉 = 1
d!

∑
τ∈Sd P (τ)Q(τ) is the standard inner product of class functions on Sd.

The squarefree case (2) of Theorem 1.3 is due to Church, Ellenberg, and Farb [6, Prop. 4.1]. The
general polynomial case (1) was shown by the author [9] using different methods which also led
to a new proof of the squarefree case. Theorem 1.3 provides a bridge between the arithmetic and
combinatorics of factorization statistics on one hand and the geometry and representation theory of
configuration spaces on the other.

Computations suggest there are not direct analogs of Theorem 1.3 for n > 1. However, an analog
does emerge in the liminal squarefree case.

Theorem 1.4. Let P be a factorization statistic, and let σkd be the character of the Sd-representation

Σk
d =

d−1⊕
j=k

sgnd ⊗H2j(PConfd(R3),Q)⊕(jk). (1.3)

Then for each n the first moment
∑

f∈Polysfd,n(Fq)
P (f) is a polynomial in q and

lim
n→∞

∑
f∈Polysfd,n(Fq)

P (f) =
1

(1− q)d
d−1∑
k=0

(−1)k〈P, σkd〉qd−k,

where the limit is taken coefficientwise in QJqK.

Since the limit in Theorem 1.4 is taken coefficientwise, the representation theoretic interpretation
of first moments manifests for sufficiently large n. For example, let L be the linear factor statistic
where L(f) is the number of linear factors of f ; the following table shows the first moment of L on
Polysf

3,n(Fq) scaled by (1− q)3.
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n (1− q)3
∑

f∈Polysf3,n(Fq)
L(f)

1 q − 5q2 + 10q3 − 10q4 + 5q5 − q6

2 q − 4q2 + 2q3 + 7q4 − 6q5 − 3q6 + 2q7 + q8 + q9 − q10

3 q − 4q2 + 3q3 − q4 + 7q5 − 6q6 − 3q8 + 3q9 − q11 + q12 + q14 − q15

4 q − 4q2 + 3q3 − q5 + 7q6 − 6q7 − 3q10 + 3q11 − q16 + q17 + q20 − q21

5 q − 4q2 + 3q3 − q6 + 7q7 − 6q8 − 3q12 + 3q13 − q22 + q23 + q27 − q28

From this table and the convergence bound in Theorem 1.1 we conclude that∑
f∈Polysf3,n(Fq)

L(f) =
q − 4q2 + 3q3 +O(qn+1)

(1− q)3
.

It then follows from Theorem 1.4 that

〈L, σ23〉 = 1 〈L, σ13〉 = 4 〈L, σ03〉 = 3.

Note that these inner products are positive integers: this reflects that L, viewed as a class function of
the symmetric group, is the character of the standard permutation representation.

The table above also illustrates a higher stability in the coefficients. For example, the coefficient
of qn+2 is 7 in the numerator of the first moment of L for all n ≥ 2. Since these exponents grow with
n, these terms vanish in the limit as n→∞. This phenomenon persists more generally and we hope
to address it in a future project.

Liminal reciprocity gives a new method to compute the expected values of factorization statistics
for univariate polynomials. As an example application we compute the expected value of the sign
function sgnd, where sgnd(λ) = (−1)d−

∑
j≥1mj(λ).

Proposition 1.5. Let d ≥ 1.
(1) The expected value Ed,1(sgnd) of the sign statistic on the set Polyd,1(Fq) is given by

Ed,1(sgnd) :=
1

Pd,1(q)

∑
f∈Polyd,1(Fq)

sgnd(f) =
1

qbd/2c
.

(2) The limiting expected valueEsf
d,∞(sgnd) of the sign statistic on the set Polysf

d,n(Fq) as n→∞
is given by

Esf
d,∞(sgnd) := lim

n→∞

1

P sf
d,n(q)

∑
f∈Polysfd,n(Fq)

sgnd(f) =

(
1

1− 1
q

)bd/2c
,

where the limit is taken 1/q-adically.

This result is equivalent to a result of Carlitz arrived at by other means. See Proposition 3.4 and
the discussion that follows.

1.3. Related work. Carlitz [4, 5] studied the asymptotic behavior of Md,n(q) for n ≥ 1. In the
language of this paper his main result is as follows.

Theorem 1.6 ([4, Sec. 3.]). For d, n ≥ 1, let md,n := degMd,n(q). Then md,n =
(
d+n
d

)
− 1 and the

sequence Md,n(q)/qmd,n of polynomials in 1/q converges coefficientwise in QJ1q K to

lim
n→∞

Md,n(q)

qmd,n
=

1

1− 1
q

.
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This work was subsequently refined and extended in [1, 7, 8, 15, 16]. Our Theorem 1.1 may be
interpreted as a determination of the q-adic asymptotics ofMd,n(q) as n→∞. In other words Carlitz
studied the limiting behavior of the leading terms of Md,n(q) and we study the limiting behavior of
the low degree terms.

The liminal reciprocity identities (Theorem 1.1 and Theorem 1.2) were discovered empirically.
We do not know the proper context for these results. The proof of the liminal reciprocity for type
polynomials (Theorem 1.2) passes through a well-known example of Stanley’s combinatorial reci-
procity phenomenon [14, Ex. 1.1]. Combinatorial reciprocity is a family of dualities between related
combinatorial problems which concretely manifests as functional equations similar in form to our
liminal reciprocity identities. However, the precise relationship between liminal and combinatorial
reciprocity remains unclear. Are there other examples of liminal reciprocity?

The relationship between the liminal first moments of squarefree factorization statistics and rep-
resentations of the symmetric group parallels our results in [9]. Church, Ellenberg, and Farb [6]
established the connection between first moments of squarefree factorization statistics for univari-
ate polynomials and the cohomology of point configurations in R2 with their twisted Grothendieck-
Lefschetz formula for squarefree polynomials. They deduce the asymptotic stability of first moments
(as d → ∞) as a consequence of representation stability. We extend this connection to general
univariate polynomials in [9, Thm. 2.7]. However, this connection does not extend to liminal first
moments; the representations Σk

d does not exhibit representation stability.
The results in [9] are expressed in terms of expected values of factorization statistics. In this paper

we focus on first moments as they lead to a cleaner statement for Theorem 1.4. The only difference
between expected values and first moments of factorization statistics is whether or not one divides by
the “total mass” of the space of polynomials considered. This difference is simply a factor of qd for
general univariate polynomials, but is more subtle for squarefree polynomials and multivariate poly-
nomials as it affects the family of characters determining the coefficients. The equivalence between
Theorem 1.3 (2) and [9, Thm. 2.5] follows from [10, Prop. 4.2]. Alternatively, Theorem 1.3 (2)
appears as stated in [6, Prop. 4.1].

Finally we note that by virtue of treating arbitrary factorization statistics P our results also provide
information on higher moments of P (since the kth moment of P is the first moment of P k.)

1.4. Acknowledgements. The author thanks Weiyan Chen, Nir Gadish, Ofir Gorodetsky, Jeff La-
garias, Bob Lutz, John Stembridge, Phil Tosteson, Michael Zieve, and the anonymous referee for
helpful conversations and suggestions on the manuscript.

2. POLYNOMIAL FACTORIZATION STATISTICS

Let Fq be a finite field. Fix some monomial ordering on Fq[x1, x2, . . . , xn]. A polynomial f ∈
Fq[x1, x2, . . . , xn] is monic with respect to this monomial ordering if the leading coefficient of f is
1. Let Polyd,n(Fq) be the set of all degree d polynomials in Fq[x1, x2, . . . , xn] which are monic with
respect to the monomial ordering. Note that the size of Polyd,n(Fq) is independent of the choice
of monomial ordering. For each m ≥ 1 let Polymd,n(Fq) ⊆ Polyd,n(Fq) be the subset of those
polynomials with all factors of multiplicity at most m. There is a filtration

Polysf
d,n(Fq) := Poly1

d,n(Fq) ⊆ Poly2
d,n(Fq) ⊆ Poly3

d,n(Fq) ⊆ . . . ⊆ Polyd,n(Fq),

where Polysf
d,n(Fq) is the set of the squarefree polynomials.

Recall that Fq[x1, x2, . . . , xn] is a unique factorization domain, hence every element of Polyd,n(Fq)
has a unique factorization as a product of irreducible monic polynomials. The factorization type of
f ∈ Polyd,n(Fq) is the partition of d given by the degrees of the irreducible factors of f . If λ is a
partition of d, then Polyλ,n(Fq) denotes the set of all f ∈ Polyd,n(Fq) with factorization type λ. For
m ≥ 1, let Polymλ,n(Fq) := Polymd,n(Fq) ∩ Polyλ,n(Fq). If λ = (d) is the partition with one part, let
Irrd,n(Fq) := Poly(d),n(Fq) be the set of monic, irreducible, total degree d polynomials.
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Lemma 2.1 shows that the cardinality of each of the sets just defined is given by a polynomial in
the size of the field q.

Lemma 2.1. For any d, n ≥ 1,
(1) |Polyd,n(Fq)| = Pd,n(q), where

Pd,n(q) =
q(
d+n
n ) − q(

d+n−1
n )

q − 1
= q(

d+n−1
n ) q

(d+n−1
n−1 ) − 1

q − 1
.

(2) Md,n(q) is a polynomial of q with rational coefficients.
(3) For every partition λ ` d,

|Polyλ,n(Fq)| = Tλ,n(q) :=
∏
j≥1

((
Mj,n(q)

mj(λ)

))
,

|Polysf
λ,n(Fq)| = T sf

λ,n(q) :=
∏
j≥1

(
Mj,n(q)

mj(λ)

)
.

where
((
x
m

))
:=
(
x+m−1

m

)
is the number of subsets with repetition of size m chosen from an x

element set.

Proof. (1) There are q(
d+n
n ) polynomials in n variables of degree at most d. Hence there are q(

d+n
n )−

q(
d+n−1
n ) polynomials in n variables of degree exactly d. After choosing a monomial order, every

degree d polynomial has a nonzero leading coefficient. Therefore the total number of degree d monic
polynomials in n variables is

|Polyd,n(Fq)| =
q(
d+n
n ) − q(

d+n−1
n )

q − 1
.

(2) We proceed by induction on d to show that

|Irrd,n(Fq)| = Md,n(q)

for some polynomial Md,n(x) ∈ Q[x]. If d = 1, then all polynomials are irreducible, hence

|Irr1,n(Fq)| = |Poly1,n(Fq)| = q
qn − 1

q − 1
,

So M1,n(q) = q q
n−1
q−1 . Suppose our claim were true for all degrees less than d > 1. By unique

factorization, the total number of polynomials with factorization type λ is

|Polyλ,n(Fq)| =
∏
j≥1

((
|Irrj,n(Fq)|
mj(λ)

))
. (2.1)

Counting elements on both sides of the decomposition

Polyd,n(Fq) =
⊔
λ`d

Polyλ,n(Fq),

gives
Pd,n(q) = |Irrd,n(Fq)|+

∑
λ`d
λ 6=(d)

|Polyλ,n(Fq)|.

If λ 6= (d), then all parts j of λ are smaller than d, which by our inductive hypothesis implies that
|Irrj,n(Fq)| = Mj,n(q) for all such j. Thus

|Irrd,n(Fq)| = Md,n(q) := Pd,n(q)−
∑
λ`d
λ 6=(d)

∏
j≥1

((
Mj,n(q)

mj(λ)

))
.
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Finally, (3) follows from (2.1) and (2). �

The definitions of the polynomials appearing in Lemma 2.1 are collected here for the reader’s
convenience.

Definition 2.2. Let d, n ≥ 1 and λ ` d, then

Pd,n(q) =
q(
d+n
n ) − q(

d+n−1
n )

q − 1
= q(

d+n−1
n ) q

(d+n−1
n−1 ) − 1

q − 1

Md,n(q) = |Irrd,n(Fq)| = |Poly(d),n(Fq)|

Tλ,n(q) = |Polyλ,n(Fq)| =
∏
j≥1

((
Mj,n(q)

mj(λ)

))
Tmλ,n(q) = |Polymλ,n(Fq)|

T sf
λ,n(q) = T 1

λ,n(q) = |Polysf
λ,n(Fq)| =

∏
j≥1

(
Mj,n(q)

mj(λ)

)
Pmd,n(q) = |Polymd,n(Fq)| =

∑
λ`d

Tmλ,n(q),

where d represents degree, n the number of variables, and m the maximum multiplicity of a factor.

There is a well-known formula [13, Cor. 2.1] for Md,1(q) given by counting elements in Fqd by the
field they generate,

Md,1(q) =
1

d

∑
e|d

µ(e)qd/e. (2.2)

The value of Md,1(k) for an integer k ≥ 1 has a combinatorial interpretation as the number of
aperiodic necklaces made with beads of k colors. For this reason, Md,1(q) is known as the dth
necklace polynomial. There is no apparent analog of (2.2) nor a combinatorial interpretation for
Md,n(k) when n > 1. Instead Md,n(q) may be computed inductively as in the proof of Lemma 2.1:

M1,n(q) = P1,n(q) = q
qn − 1

q − 1

Md,n(q) = Pd,n(q)−
∑
λ`d
λ 6=[d]

Tλ,n(q).

Our next result shows that all the polynomials listed in Definition 2.2 converge coefficientwise
to rational functions in the ring of formal power series QJqK as the number of variables n tends to
infinity. Recall that coefficientwise convergence in QJqK is equivalent to convergence with respect to
the q-adic topology. All coefficientwise limits are taken with respect to the q-adic topology.

Theorem 2.3. Let d ≥ 1. Then,
(1) The sequence Pd,n(q) converges coefficientwise in QJqK to

Pd,∞(q) = lim
n→∞

Pd,n(q) =

{
− 1

1− 1
q

d = 1

0 d > 1.

(2) For m ≥ 1 the sequence Pmd,n(q) converges coefficientwise in QJqK to

Pmd,∞(q) = lim
n→∞

Pmd,n(q) =


−
(

1
1− 1

q

)k
d = (m+ 1)k −m(

1
1− 1

q

)k
d = (m+ 1)k

0 d 6≡ 0, 1 mod m+ 1.
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In particular, if m = 1, then

P sf
d,∞(q) = (−1)d

(
1

1− 1
q

)b d+1
2
c
.

(3) For all partitions λ ` d and m ≥ 1 the sequences Md,n(q), Tλ,n(q), and Tmλ,n(q) converge
coefficientwise in QJqK to rational functions as n→∞. Furthermore,

Tλ,∞(q) =
∏
j≥1

((
Mj,∞(q)

mj(λ)

))

T sf
λ,∞(q) =

∏
j≥1

(
Mj,∞(q)

mj(λ)

)
.

Proof. (1) By Lemma 2.1

Pd,n(q) = q(
d+n−1
n ) q

(d+n−1
n−1 ) − 1

q − 1
.

For d = 1 this simplifies to

P1,n(q) = q
qn − 1

q − 1
.

Since limn→∞ q
n = 0 in the QJqK, it follows that

P1,∞(q) = lim
n→∞

q
qn − 1

q − 1
= − q

q − 1
= − 1

1− 1
q

.

If d > 1, then limn→∞
(
d+n−1
n

)
=∞. Thus

Pd,∞(q) = lim
n→∞

q(
d+n−1
n ) q

(d+n−1
n−1 ) − 1

q − 1
= 0.

(2) Consider the generating functions

Z(Tmn , t) =
∑
d≥0

∑
λ`d

Tmλ,n(q)td =
∑
d≥0

Pmd,n(q)td

Z(Tn, t) =
∑
d≥0

∑
λ`d

Tλ,n(q)td =
∑
d≥0

Pd,n(q)td.

Recall that the binomial theorem allows us to exponentiate 1 + t or 1
1−t by any element m of a ring

R in RJtK by

(1 + t)m :=
∑
d≥0

(
m

d

)
td

(
1

1− t

)m
:=
∑
d≥0

((m
d

))
td.

The following product formulas follow by unique factorization in Fq[x1, x2, . . . , xn],

Z(Tmn , t) =
∏
j≥1

(1 + tj + t2j + . . .+ tmj)Mj,n(q) =
∏
j≥1

(
1− t(m+1)j

1− tj

)Mj,n(q)

Z(Tn, t) =
∏
j≥1

(
1

1− tj

)Mj,n(q)

.
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Hence Z(Tn, t) = Z(Tn, t
m+1)Z(Tmn , t). The coefficients of td for d ≥ 0 in this identity are poly-

nomials in QJqK which converge q-adically as n → ∞. Taking a limit t-coefficientwise as n → ∞,
(1) implies that

1− 1
1− 1

q

t = Z(T∞, t) = Z(T∞, t
m+1)Z(Tm∞ , t) =

(
1− 1

1− 1
q

tm+1
)∑
d≥0

Pmd,∞(q)td.

Comparing coefficients we conclude that

Pmd+m+1,∞(q) =
1

1− 1
q

Pmd,∞(q)

for all d ≥ 0, together with the initial values

Pm0,∞(q) = 1

Pm1,∞(q) = − 1

1− 1
q

Pmd,∞(q) = 0 for 1 < d ≤ m.
Then (2) follows by induction.

(3) It suffices to prove that for every d ≥ 1 the sequence Md,n(q) converges q-adically to a rational
function, the other claims follow by the explicit formulas given in Definition 2.2 and continuity.
Recall the recursive formulas for Md,n(q) used in the proof of Lemma 2.1. For all d, n ≥ 1,

M1,n(q) = P1,n(q)

Md,n(q) = Pd,n(q)−
∑
λ`d
λ 6=[d]

∏
j≥1

((
Mj,n(q)

mj(λ)

))
.

Taking coefficientwise limits as n→∞ using (1) gives

M1,∞(q) = P1,∞(q) = − 1

1− 1
q

,

Md,∞(q) = −
∑
λ`d
λ 6=[d]

∏
j≥1

((
Mj,∞(q)

mj(λ)

))
.

It follows by induction that Md,∞(q) is a rational function of q for all d ≥ 1. �

There is a surprising relationship between the number of irreducible polynomials in one variable
Md,1(q) and the limit Md,∞(q) which gives us an explicit formula for Md,∞(q). This relationship
takes the form of an involutive functional equation we call liminal reciprocity.

Theorem 2.4 (Liminal reciprocity). For all d ≥ 1,

Md,∞(q) = −Md,1

(
1

1− 1
q

)
.

More explicitly,

Md,∞(q) = −1

d

∑
e|d

µ(d/e)

(
1

1− 1
q

)e
.

Proof. Recall the generating function Z(Tn, t) used in the proof of Theorem 2.3 (2),

Z(Tn, t) =
∑
d≥0

Pd,n(q)td =
∏
j≥1

(
1

1− tj

)Mj,n(q)
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Theorem 2.3 (1) implies that the t-coefficientwise limit as n→∞ is simply

1− 1
1− 1

q

t =
∏
d≥1

(
1

1− td

)Md,∞(q)

. (2.3)

Consider the well-known cyclotomic identity [11], or equivalently the Euler product formula for the
Hasse-Weil zeta function of A1(Fq),

1

1− qt
=
∏
d≥1

(
1

1− td

)Md,1(q)

. (2.4)

Substituting q 7→ 1
1− 1

q

and taking reciprocals in (2.4) gives

1− 1
1− 1

q

t =
∏
d≥1

(
1

1− td

)−Md,1

(
1

1− 1
q

)
.

Comparing exponents with (2.3) we conclude that

Md,∞(q) = −Md,1

(
1

1− 1
q

)
.

�

The rate of q-adic convergence of Md,n(q) may be determined from the proof of Theorem 2.4.

Corollary 2.5. For all d ≥ 1,

Md,n(q) ≡Md,∞(q) mod qn+1.

Proof. Recall that

Pd,n(q) = q(
d+n−1
n ) q

(d+n−1
n−1 ) − 1

q − 1
.

Since
(
d+n−1
n

)
≥ n+ 1 for d ≥ 2 and

P1,n(q) =
qn+1 − q
q − 1

≡ − 1

1− 1
q

mod qn+1,

it follows that ∑
d≥0

Pd,n(q)td ≡ 1− 1
1− 1

q

t mod qn+1.

Thus ∏
d≥1

(
1

1− td

)Md,n(q)

=
∑
d≥0

Pd,n(q)td

≡ 1− 1
1− 1

q

t mod qn+1

≡
∏
d≥1

(
1

1− td

)Md,∞(q)

mod qn+1

and thus
Md,n(q) ≡Md,∞(q) mod qn+1.

�
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Notice that the fractional linear transformation q 7−→ 1
1− 1

q

is an involution. Thus Theorem 2.4 is

equivalent to

Md,1(q) = −Md,∞

(
1

1− 1
q

)
.

Our next result combines the liminal reciprocity relating Md,1(q) and Md,∞(q) with the combinato-
rial reciprocity identity (

−x
m

)
= (−1)m

((
x

m

))
, (2.5)

to deduce a striking relationship between factorization statistics of polynomials when n = 1 and
n =∞.

Theorem 2.6 (Liminal reciprocity). For any partition λ, let `(λ) =
∑

j≥1mj(λ) denote the number
of parts of λ. Then

T sf
λ,∞(q) = (−1)`(λ)Tλ,1

(
1

1− 1
q

)
,

Tλ,∞(q) = (−1)`(λ)T sf
λ,1

(
1

1− 1
q

)
.

Proof. Theorem 2.3 (3), Theorem 2.4, and the combinatorial reciprocity identity (2.5) imply that

T sf
λ,∞(q) =

∏
j≥1

(
Mj,∞(q)

mj(λ)

)

=
∏
j≥1

(−Mj,1

(
1

1− 1
q

)
mj(λ)

)

=
∏
j≥1

(−1)mj(λ)

Mj,1

(
1

1− 1
q

)
mj(λ)


= (−1)`(λ)Tλ,1

(
1

1− 1
q

)
.

The second identity follows from a parallel computation noting that (2.5) is equivalent to((
−x
m

))
= (−1)m

(
x

m

)
.

�

The liminal reciprocity identity

T sf
λ,∞(q) = (−1)`(λ)Tλ,1

(
1

1− 1
q

)
relates the limiting number of squarefree polynomials with factorization type λ in Fq[x1, x2, . . . , xn]
as n→∞ to the number of polynomials Fq[x] with factorization type λ with no restrictions on factor
multiplicity. This relationship is, to us, rather mysterious. It would be interesting to find a conceptual
explanation for this relationship between infinite and one dimensional factorization statistics.

3. LIMINAL FIRST MOMENTS OF SQUAREFREE FACTORIZATION STATISTICS

A factorization statistic is a function P defined on Polyd,n(Fq) such that P (f) only depends on the
factorization type of f ∈ Polyd,n(Fq). Equivalently, P is a function defined on the partitions of the
degree d, or a class function of the symmetric group Sd. In [9] we determined explicit formulas for
the first moments of factorization statistics on Polyd,1(Fq) and Polysf

d,1(Fq) in terms of the characters
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of symmetric group representations related to the cohomology of point configurations in Euclidean
space.

Theorem 3.1 ([9, Thm. 2.4, Thm. 2.5], [6, Prop. 4.1]). Let P be a factorization statistic, and let
ψkd , φkd be the characters of the Sd-representations H2k(PConfd(R3),Q) and Hk(PConfd(R2),Q)
respectively. Then

(1)
∑

f∈Polyd,1(Fq)

P (f) =
d−1∑
k=0

〈P,ψkd〉qd−k

(2)
∑

f∈Polysfd,1(Fq)

P (f) =
d−1∑
k=0

(−1)k〈P, φkd〉qd−k,

where 〈P,ψkd〉 = 1
d!

∑
τ∈Sd P (τ)ψkd(τ) is the standard inner product of class functions on Sd.

The identity (2) was first shown by Church, Ellenberg, and Farb [6, Prop. 4.1] using algebro-
geometric methods including the Grothendieck-Lefschetz trace formula. They called this identity the
twisted Grothendieck-Lefschetz formula. We gave a new proof in [9, Thm. 2.5] using a generating
function argument. Our results in [9] are stated in terms of expected values instead of first moments;
this distinction has little effect in the Polyd,1(Fq) case, but does change the family of representations
in the squarefree case Polysf

d,1(Fq): since the total number of degree d squarefree polynomials in Fq[x]

is P sf
d,1(q) = qd − qd−1, dividing the first moment of a factorization statistic by qd − qd−1 results in a

polynomial with different coefficients. This version of (2) appears in [6, Prop. 4.1].
The next result combines Theorem 3.1 with liminal reciprocity to express the limiting first moments

of squarefree factorization statistics in terms of characters of symmetric group representations.

Theorem 3.2. Let P be a factorization statistic, and let σkd be the character of the Sd-representation

Σk
d =

d−1⊕
j=k

sgnd ⊗H2j(PConfd(R3),Q)⊕(jk). (3.1)

Then

lim
n→∞

∑
f∈Polysfd,n(Fq)

P (f) =
1

(1− q)d
d∑

k=0

(−1)k〈P, σkd〉qd−k.

Theorem 3.2 follows from the following representation theoretic interpretation of the liminal square-
free type polynomials T sf

λ,∞(q). Recall that for a partition λ the liminal squarefree type polynomial
T sf
λ,∞(q) is defined by

T sf
λ,∞(q) = lim

n→∞
T sf
λ,n(q),

where T sf
λ,n(q) is the number of monic squarefree polynomials in Fq[x1, x2, . . . , xn] with factorization

type λ.

Theorem 3.3. Let λ ` d be a partition, and let σkd be the character of the Sd-representation Σk
d

defined in (3.1). Then

T sf
λ,∞(q) =

1

zλ(1− q)d
d−1∑
k=0

(−1)kσkd(λ)qd−k,

where zλ =
∏
j≥1 j

mj(λ)mj(λ)! is the number of permutations in Sd commuting with a permutation
of cycle type λ.
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Proof. Let ψkd be the character of the Sd-representation H2k(PConfd(R3),Q). In [9, Thm. 2.1] we
showed that for all partitions λ ` d,

Tλ,1(q) =
1

zλ

d−1∑
k=0

ψkd(λ)qd−k.

Thus, Theorem 2.6 gives

T sf
λ,∞(q) = (−1)`(λ)Tλ,1

(
1

1− 1
q

)
=

1

zλ

d−1∑
j=0

(−1)`(λ)ψjd(λ)

(
1

1− 1
q

)d−j

=
1

zλ(1− q)d
d−1∑
j=0

(−1)d−`(λ)ψjd(λ)qd−j(q − 1)j

=
1

zλ(1− q)d
d−1∑
j=0

sgnd(λ)ψjd(λ)qd−j
j∑

k=0

(−1)k
(
j

k

)
qj−k

=
1

zλ(1− q)d
d−1∑
k=0

(−1)k
( d∑
j=k

(
j

k

)
sgnd(λ)ψjd(λ)

)
qd−k

=
1

zλ(1− q)d
d−1∑
k=0

(−1)kσkd(λ)qd−k.

�

We now prove Theorem 3.3.

Proof. Since P depends only on factorization type, the limiting first moment of P may be rewritten
as

lim
n→∞

∑
f∈Polysfd,n(Fq)

P (f) = lim
n→∞

∑
λ`d

P (λ)T sf
λ,n(q) =

∑
λ`d

P (λ)T sf
λ,∞(q).

Then Theorem 3.3 implies∑
λ`d

P (λ)T sf
λ,∞(q) =

∑
λ`d

1

zλ(1− q)d
d−1∑
k=0

(−1)kP (λ)σkd(λ)qd−k

=
1

(1− q)d
d−1∑
k=0

(−1)k
∑
λ`d

P (λ)σkd(λ)

zλ
qd−k

=
1

(1− q)d
d−1∑
k=0

(−1)k〈P, σkd〉qd−k.

�

The coefficients of T sf
λ,1(q) also have representation theoretic interpretations, which suggests that

we might hope for a version of Theorem 3.3 for the limiting first moments of factorization statistics
on Polyd,n(Fq). However, computations show that the coefficients of Tλ,∞(q) are determined by
virtual characters, unlike those of T sf

λ,∞(q). Since this is what we would expect for an arbitrary class
function valued in 1

zλ
Z we do not pursue it.
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In [9] we pose the question of finding a geometric interpretation of Theorem 3.1 which explains
the connection between the configuration space PConfd(R3) and factorization statistics of degree d
polynomials over Fq. Going further, we would like to know any conceptual explanation for Theorem
3.3, be it geometric or combinatorial. The sequence of representations Σk

d is unfamiliar to us; some
basic properties are collected below in Proposition 3.5 with the hope that they may be recognized by
the reader.

The representation theoretic interpretation of the coefficients of T sf
λ,∞(q) was discovered empiri-

cally by the author pursuing generalizations of squarefree splitting measures to multivariate polyno-
mials. It was in the course of trying to establish this connection with representation theory that the
liminal reciprocity and all the results of [9] were found.

3.1. Example. We demonstrate the liminal reciprocity identity of Theorem 2.6 by computing the
expected value of the sign statistic sgnd on degree d univariate polynomials Polyd,1(Fq) and the
limiting expected value of sgnd on squarefree degree d polynomials Polysf

d,∞(Fq).
Let sgnd be the sign character of Sd. Note that sgnd(λ) = (−1)d(−1)`(λ), where `(λ) =∑
j≥1mj(λ) is the number of parts of λ. Recall that Pd,n(q) = |Polyd,n(Fq)| and P sf

d,n(q) =

|Polysf
d,n(Fq)|.

Proposition 3.4. Let d ≥ 1.
(1) The expected value Ed,1(sgnd) of the sign statistic on the set Polyd,1(Fq) is given by

Ed,1(sgnd) :=
1

Pd,1(q)

∑
f∈Polyd,1(Fq)

sgnd(f) =
1

qbd/2c
.

(2) The limiting expected valueEsf
d,∞(sgnd) of the sign statistic on the set Polysf

d,n(Fq) as n→∞
is given by

Esf
d,∞(sgnd) := lim

n→∞

1

P sf
d,n(q)

∑
f∈Polysfd,n(Fq)

sgnd(f) =

(
1

1− 1
q

)bd/2c
,

where the limit is taken 1/q-adically.

Proof. (1) Since sgnd(f) depends only on the factorization type of f we have∑
f∈Polyd,1(Fq)

sgnd(f) =
∑
λ`d

sgn(λ)Tλ,1(q).

Theorem 2.6 gives the identity

(−1)`(λ)Tλ,1(q) = T sf
λ,∞

(
1

1− 1
q

)
,

from which we deduce for each d ≥ 1∑
λ`d

sgn(λ)Tλ,1(q) =
∑
λ`d

(−1)d(−1)`(λ)Tλ,1(q)

=
∑
λ`d

(−1)dT sf
λ,∞

(
1

1− 1
q

)
= (−1)dP sf

d,∞

(
1

1− 1
q

)
.

Theorem 2.3 (2) tells us

P sf
d,∞(q) = (−1)d

(
1

1− 1
q

)b d+1
2
c
.
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Thus, ∑
λ`d

sgnd(λ)Tλ,1(q) = (−1)dP sf
d,∞

(
1

1− 1
q

)
= qb

d+1
2
c.

Since Pd,1(q) = qd and d− b(d+ 1)/2c = bd/2c it follows that

Ed,1(sgnd) =
1

Pd,1(q)

∑
f∈Polyd,1(Fq)

sgn(f) =
1

qbd/2c
.

(2) For each n ≥ 1,

Esf
d,n(sgnd) :=

1

P sf
d,n(q)

∑
f∈Polysfd,n(Fq)

sgnd(f) =
1

P sf
d,n(q)

∑
λ`d

sgn(λ)T sf
λ,n(q).

Taking a limit as n→∞,

Esf
d,∞(sgnd) =

1

P sf
d,∞(q)

∑
λ`d

sgnd(λ)T sf
λ,∞(q).

Theorem 2.6 gives us

(−1)`(λ)T sf
λ,∞(q) = Tλ,1

(
1

1− 1
q

)
.

Therefore, ∑
λ`d

sgnd(λ)T sf
λ,∞(q) =

∑
λ`d

(−1)d(−1)`(λ)T sf
λ,∞(q)

=
∑
λ`d

(−1)dTλ,1

(
1

1− 1
q

)
= (−1)d

(
1

1− 1
q

)d
.

Since P sf
d,∞(q) = (−1)d

(
1

1− 1
q

)b(d+1)/2c
and d− b(d+ 1)/2c = bd/2c we conclude that

Esf
d,∞(sgnd) =

1

P sf
d,∞(q)

∑
λ`d

sgnd(λ)T sf
λ,∞(q) =

(
1

1− 1
q

)bd/2c
.

�

Note that Theorem 3.1 (1) tells us that

Ed,1(sgnd) =
d−1∑
k=0

〈sgnd, ψ
k
d〉

qk
.

Comparing this with Proposition 3.4 (1) it follows that H2k(PConfd(R3),Q) has a one dimensional
sgnd component when k = bd/2c and no sgnd component for any other value of k.

The sign function sgnd is closely related to the Liouville function λ studied by Carlitz [2, 3] in the
context of polynomials in Fq[x]. In particular, if f(x) ∈ Polyd,1(Fq)

λ(f) = (−1)dsgnd(f).

Carlitz [2, (ii) pg. 121][3, Sec. 3] computes the first moment of the Liouville function using zeta
functions. Proposition 3.4 may also be deduced from his result. We thank Ofir Gorodetsky for
bringing this work to our attention.
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3.2. The Sd-representations Σk
d. Theorem 3.2 relates the limiting first moments of factorization

statistics on squarefree polynomials with a family of symmetric group representations Σk
d. Recall that

Σk
d =

d−1⊕
j=k

sgnd ⊗H2j(PConfd(R3),Q)⊕(jk).

We conclude with Proposition 3.5 which records some observations about the representations Σk
d.

Proposition 3.5. Let σkd be the character of Σk
d. Then

(1) The dimension of Σk
d is

dim Σk
d =

d−1∑
i=k

[
d

d− i

](
i

i− k

)
,

where
[
m
n

]
is an unsigned Stirling number of the first kind.

(2) The representation
d−1⊕
k=0

Σk
d

has dimension (2d− 1)!! = (2d− 1)(2d− 3) · · · 3 · 1.
(3) Σ0

d is isomorphic to the regular representation Q[Sd].

Note that the sequence dim Σk
d appears as A088996 in the Online Encyclopedia of Integer Se-

quences [12].

Proof. (1) The dimension of a representation is given by evaluating its character on the identity, hence

dim Σk
d = σkd((1d)).

Theorem 3.3 implies that

T sf
(1d),∞(q) =

1

d!(1− q)d
d−1∑
k=0

(−1)kσkd((1d))qd−k.

On the other hand, we may compute T sf
(1d),∞(q) directly as

T sf
(1d),∞(q) =

(
Md,∞(q)

d

)
=

(− 1
1− 1

q

d

)
.

The unsigned Stirling numbers of the first kind are defined to be the coefficients in the expansion of a
binomial coeffcient

(
x
d

)
, (

x

d

)
=

1

d!

d−1∑
k=0

(−1)k
[

d

d− k

]
xd−k.

Thus,

T sf
(1d),∞(q) =

1

d!

d−1∑
i=0

(−1)i
[

d

d− i

](
− 1

1− 1
q

)d−i

=
1

d!(1− q)d
d−1∑
i=0

(−1)i
[

d

d− i

]
qd−i(1− q)i

=
1

d!(1− q)d
d−1∑
i=0

i∑
j=0

(−1)i+j
[

d

d− i

](
i

j

)
qd−(i−j).
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Let k = i− j and write the sum in terms of i and k to get

T sf
(1d),∞(q) =

1

d!(1− q)d
d−1∑
k=0

(−1)k

(
d−1∑
i=k

[
d

d− i

](
i

i− k

))
qd−k.

Comparing coefficients in our two expressions for T sf
(1d),∞(q) we conclude that

dim Σk
d = σkd((1d)) =

d−1∑
i=k

[
d

d− i

](
i

i− k

)
.

(2) Letψkd be the character ofH2k(PConfd(R3),Q). Then using the definition of Σk
d and switching

the order of summation we have
d−1∑
k=0

σkd((1d)) =
d−1∑
k=0

d∑
j=k

(
j

k

)
ψjd((1

d)) =
d−1∑
j=0

j∑
k=0

(
j

k

)
ψjd((1

d)) =
d−1∑
j=0

2jψjd((1
d)).

Note that by Theorem 3.1 (1),
d−1∑
j=0

ψjd((1
d))

qj
= d!

T(1d),1(q)

qd
=
d!

qd

(
q + d− 1

d

)
. (3.2)

Evaluating (3.2) at q = 1
2 implies

d−1∑
j=0

2jψjd((1
d)) = 2dd!

(
d− 1

2

d

)
= (2d− 1)(2d− 3) · · · 3 · 1 = (2d− 1)!!.

Therefore dim
⊕d

k=0 Σk
d = (2d− 1)!!.

(3) By definition we have

Σ0
d
∼= sgnd ⊗

d−1⊕
j=0

H2j(PConfd(R3),Q).

In [9, Thm. 2.8] we showed that
d−1⊕
j=0

H2j(PConfd(R3),Q) ∼= Q[Sd],

where Q[Sd] is the regular representation. The claim follows from

sgnd ⊗Q[Sd] ∼= Q[Sd].

�
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